Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere.
نویسندگان
چکیده
Einstein realized that the fluctuations of a Brownian particle can be used to ascertain the properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics and leading to applications from energy harvesting to medical imaging. Here, we use heated optically levitated nanospheres to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and provides a means for testing non-equilibrium thermodynamics.
منابع مشابه
Investigation of Brownian Motion of CuO-Water Nanofluid in a Porous Cavity with Internal Heat Generation by Using of LTNE Model
In this paper, the effect of the Brownian term in natural convection of CuO-Water nanofluid inside a partially filled porous cavity, with internal heat generation has been studied. It is assumed that the viscosity and thermal conductivity of nanofluid consists of a static part and a Brownian part of which is a function of temperature and the volume fraction of nanofluid. Because of internal hea...
متن کاملMolecular Dynamics Simulations of Freezing Behavior of Pure Water and 14% Water-NaCl Mixture Using the Coarse-Grained Model
We performed molecular dynamics simulations using the coarse-grained model to study the freezing behavior of pure water and 14% water-salt mixture in a wide range of temperatures for a very long time around 50 nanoseconds. For the salty water, an interface in nanoscale was used. For both systems, the f...
متن کاملCavity opto-mechanics using an optically levitated nanosphere.
Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach...
متن کاملKinetic nanofriction: a mechanism transition from quasi-continuous to ballistic-like Brownian regime
Surface diffusion of mobile adsorbates is not only the key to control the rate of dynamical processes on solid surfaces, e.g. epitaxial growth, but also of fundamental importance for recent technological applications, such as nanoscale electro-mechanical, tribological, and surface probing devices. Though several possible regimes of surface diffusion have been suggested, the nanoscale surface Br...
متن کاملObservation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4'-Bipyridine Gold Nanosphere Oligomers.
We clarify mechanistic questions regarding plasmon-driven chemistry and nanoscale photocatalysis within optically confined near-field plasmonic systems. Using surface-enhanced Raman scattering (SERS), we directly monitor the photoinduced reaction dynamics of 4,4'-bipyridine molecules, localized in plasmonic hot spots within individual gold nanosphere oligomers. Our experiment generates surface ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 9 6 شماره
صفحات -
تاریخ انتشار 2014